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The theory of gauge transformations in Finsler space is applied to general 
relativity. It is seen that the transformations produce new metrics which corres- 
pond to the introduction of physical fields. The geodesic equation in the transfor- 
med space is equivalent to the equation of motion in the original space where 
the field is included by a force term. An example is given of a transformation 
and resulting metric in which the electromagnetic potential is related to para- 
meters of the gauge transformation rather than to gauge potentials. This implies 
that the electromagnetic field corresponds to a connection instead of a curvature. 
Another example is given which shows how Weyl or conformal transformations 
are related to a class of the gauge transformations. 

1. I N T R O D U C T I O N  

In  recent  years  a t heo ry  o f  gauge  t r an s fo rma t ions  in the  con tex t  o f  
F ins le r  space  has been  d e v e l o p e d  by  G.  S. A s a n o v  and  co l l abo ra to r s  
(Asanov ,  1985, 1987, 1988; Ar ingaz in  and  Asanov ,  1988; A s a n o v  et  al., 
1988; A s a n o v  and  Kiselev,  1988) and  also by  S. I k e d a  ( Ikeda ,  1985, 1987, 
1989). In  this  t heo ry  the  F ins l e r  t angen t  vec tors  are  t r ea ted  as i n d e p e n d e n t  
var iab les  a t t a ched  to po in t s  in space- t ime .  The  h o m o g e n e o u s  t r ans fo rma-  
t ions  o f  the  t angen t  space  are  ca l led  gauge  t r ans fo rma t ions .  S t a n d a r d  f iber  
b u n d l e  o r  gauge  theory  m e t h o d s  can  be a p p l i e d  to the  F ins l e r  t heo ry  to 
p r o d u c e ,  for  example ,  iden t i f i ca t ion  o f  F ins le r  connec t ions  wi th  genera l i zed  

gauge  po ten t ia l s .  
The  theory  is s ignif icant  because  it offers an a l te rna t ive  to mul t i -  

d i m e n s i o n a l  theor ies  o f  the  K a l u z a - K l e i n  type ,  yet  is ab le  to ach ieve  the  
same  sorts  o f  objec t ives ,  for  example ,  a uni f ied  a p p r o a c h  to Y a n g - M i l l s  
fields and  the  space  o f  genera l  relat ivi ty.  The  theory  is b r o a d  e n o u g h  to 
inc lude  p rac t i ca l ly  all f ields o f  cur ren t  phys i ca l  in teres t  into its f r a m e w o r k  
( Asanov  a n d  Kiselev,  1988). 
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The present paper  proposes a specialized application of  the Finsler 
gauge theory to general relativity itself. The fiber bundle includes the general 
relativistic base space with local coordinates x ~ and a fiber space 1-[-l(x) 
which has local coordinates y~, the Finsler tangent vectors. In the general 
Asanov theory the metrics in both the base space and the tangent space are 
considered. Here, attention is directed only to the base space metric, which 
is, however, dependent  on both x ~ and y~. The action on this metric of  
tangent space transformations is the main focus of  this work. It will be seen 
that this approach gives a new point of  view on the spaces of  general 
relativity and provides a framework for the direct incorporation of  fields 
(for example, the electromagnetic field) into the metric. 

The procedure to be followed is to define a transformation and consider 
its effect on the geometric objects in the space. In general, as is usual in 
gauge theories, expressions will be sought for derivatives which are covariant 
under the gauge transformations. This leads to the connections or gauge 
potentials. 

In Section 2 coordinate transformations in Finsler space are reviewed. 
The approach of  Miron and Anastasiei (1987) is applied. This gives a concise 
derivation of  the Caftan connection which reflects the horizontal and vertical 
subspace decomposition of  the Finsler tangent bundle. This is accomplished 
by the introduction of  a nonlinear connection which defines a covariant 
basis for the space. 

In Section 3 the development of  the main ideas of  this work is presented. 
The gauge transformations now act only on the tangent vectors and not on 
the base space coordinates. These transformations are able to generate new 
metrics in the spaces of  general relativity by a process which might be 
thought of  as "turning on"  the gauge fields. A new nonsymmetric connection 
appears which is directly related to the gauge transformations. A new 
velocity is also defined which is related to the original velocity by a scale 
change rather than a contravariant transformation. 

In Section 4 an equivalence principle is used to define a special class 
of  gauge transformations in the tangent space where the original metrics 
are locally Lorentzian. These transformations have particular significance 
in that they describe how forces in an inertial frame can be represented by 
a metric. The nonsymmetric connection of the metric can be expressed 
directly in terms of the tangent space transformation matrices. The geodesic 
equation in the transformed space with a connection related to the gauge 
potentials can be the same as the equation of  motion in the original inertial 
space which includes the external force. 

In Section 5 particular examples of  transformations are chosen in order 
to illustrate the theory. The first transformation example shows how the 
gauge transformation parameters can be related to the electromagnetic 
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potential. This means that the electromagnetic potential is interpreted as a 
different sort of geometrical object than the gauge potential. Consequently, 
the electromagnetic field is similar geometrically to a connection instead of 
to a curvature as in previous theories. The equation of motion is then 
identical with the Lorentz equation for charged particles. In other theories 
the equation of geodesic deviation is compared with the Lorentz equation. 
So a new unified approach to gravitation and electromagnetism is advanced. 

The second transformation example has the form of a conformal 
transformation. This compares with traditional Weyl theory except that the 
crucial objection, of noninvariance of scalar products, is removed. So the 
conformal transformation considered as a Finsler gauge transformation 
offers a way to reinstate the Weyl theory without nonphysical effects. 

In regard to notation, the reader will quickly observe that the presenta- 
tion here uses the older tensor index formalism where all quantities are 
written explicitly in terms of local coordinates. This is not as elegant as 
modem geometrical notation, but has the dual advantages of operational 
facility and of being accessible to a broader range of physicists. 

2. TRANSFORMATIONS IN FINSLER SPACE 

The standard references in the theory of Finsler space are the books 
of Rund (1959) and Asanov (1985). Here, the general approach of Miron 
and Anastasiei (1987) which emphasizes the fiber bundle aspects of Finsler 
space is used. Chapter VII of Miron and Anastasiei (1987) contains a 
rigorous geometrical definition of Finsler spaces. Since this monograph is 
not widely accessible, the discussion will be repeated in some detail. 

The Finsler metric function F is defined by FZ(x, y ) =  g,~(x, y ) y  y . 
The tensor g,~ is not in general the metric tensor, but simply a homogeneous 
tensor of degree zero in y which is used for the purpose of defining F. The 
Finsler metric tensor is f ,~(x ,  y)  = 102F2/Oy" OyL 

The relation between f and g is 

Og~,,~ ,~ Og,~ ~ 1 O2 g,~t3 y,~yr 
f ,~=g~ ,~+~y~  Y +~y~  Y -~2 0y~" Oy~ (2.1) 

It is not hard to see that if g is independent of y, then f =  g and the 
space is Riemannian. 

The function F is homogeneous of degree one with respect to y. By 
the Euler theorem this means that (OF/Oy'~)y '~= F. This implies 

2C~ , . _ o f ~  ,._O_Og,~e , 
t3~,Y - O y  ~ y - - Oy ~, y (2.2) 
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The quantity C~ m, = ~ (Of~ /ay  ~) is known as the Cartan torsion tensor and 
is obviously symmetric in all its indices. 

It is natural to define the Finsler line element as ds = ( f ~  dx  ~ dxV) 1/2. 
Here dx is no longer a general increment in coordinate space, but is in a 
direction tangent to the path defined by s. The direction is understood to 
be timelike in the present work. 

As indicated in the Introduction, the metric tensor here determines 
distances in the coordinate space only. In the more general work of  Asanov 
(1987) and Asanov et al. (1988), metrics of  both the coordinate space and 
the tangent space are considered. The tangent space or "internal"  metric 
is not discussed here. 

Since F is homogeneous and y~ = dx~ /ds ,  

ds = F(x ,  dx)  = F ( x ,  y )  ds (2.3) 

Variation of F produces the Euler-Lagrange equations, 

d r o F ( x , y ) ]  OF(x,y_____~)=O 

ds L ~ J ax ~ 

This, in turn, as shown in any treatise on Finsler space, leads to the Finsler 
geodesic equation: 

dy ~' ~- y2t3y~yt3 1 d F  
ds - - F  d s  y ~ = O  

The Finsler-Christoffel connection y(x, y) is 

, : ,  os ,_ oso,  
t a x  ax ~ a x " ]  

Since from (2.3) F(x ,  y )  has the value of  unity, the geodesic equation 
in this case is 

dY ~" r y~y~y t3  = 0 (2.4) 
ds 

A change of  section or coordinate transformation of  the base space is 
x '~" = x'~'(x~). In local coordinates the transformation matrix is denoted by 

�9 ~ _ a x , ~ l a x  ~. X u - 

Since dx  '~" = X *~ dx  ~, the transformation of  y is y'~ -- X*~'yL  
The natural basis (a/ax ~, a/ay ~) of  the module of  the vector fields 

transforms as 

a ~ a a x e ,  .,~ a a a 
=X~,  ~ _ ~ + ~ , ~ y '  - X ~  aY ~ ax TM ox dx ay ~ ay '~" 

where x '~x " * ~ -  ~" " - v - ~ c t  - -  ~ O t  �9 
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A new basis is needed which transforms covariantly. This is 
( 6 /  8x  ~', O/Oy~'), with 

6x~, Ox~ ,  N ~  oy~ 

The matrix N~, is the local representation of  what is called the nonlinear 
connection: 

1 0 
N ~ - 2  0y" (Y~t~Y~Y~) 

The N~. satisfy the transformation law 

N,r  ~ - v* ,~  v ~  T,r; ..,.. X * a  O X ;  . ,,, 
--.'~ ~ -".,8~" ~ -- O X ~'-'-~ Y 

so the tangent basis transforms as required. 
The dual basis is given by (dx" ,  By") with By"= d y ' ~ + N ~  dx". 

The geodesics of  the Finsler space can be expressed as 

6Y~ dYe" ~- N ~  dx~ Y~" dx*' 
8s = 0, - a s  (2.5) 

The partial derivative of  a general vector q~(x ,  y )  would transform as 

Oq,~ . ,~, Oq , OX~ q~ 

Ox" = X * ~  Ox - - - g v  Ox " - - ' y  

This should be replaced by a derivative 

q ~ _  y*~v't3.,~ ~ ~q~ ~ '~ - .. . . . .  ,~ ;~  q;~  = + F , ~ q  (2.6) 
8x  ~ 

where F is a connection which transforms as 

- - . .~ .  ~ .~,~. . t3--z .~-X~Xt3 0x  z, 

Of particular interest is the covariant derivative of  the Finsler metric 
tensor, 

f ,,t3 ; ~, = 6 f ,~ - f ~t3F ;~, - f ~ F  ~.  (2.7) 
t)x 

where 

6 x "  - Ox ~" - N ~  Oy ~ 
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It is usually assumed that the space is "metric," that is, f~ ;~  = 0, so 
that permutation of the indices in (2.7) gives 

1  ,/ss o F:.=Tf 8x,<l (2.8) 

This means that F is symmetric in the lower two indices. Also, it follows 
immediately from (2.2) and (2.8) that 

F ~ y ~  = y ~ y ~  _ r,r~,,,~r~ 

The use of (2.2) again gives 

F ~ ,y t 3y  ~ = y ~ y ~ y ' ~  

Also, when y is substituted for q in (2.6), since y is independent of x, 
one has 

N~, = y~F~t3 (2.9) 

It can now be seen that the two expressions of the geodesic equation 
(2.4) and (2.5) are equivalent. 

A vertical covariant derivative can also be defined: 

q"l. =Oq~'+oaC~ 

It follows from the definition of C that 

_ o f c ~ a _ , e  C ~ _ r  r ~ - 
f~e  I~, - Oy~, j ~  ,~  j ~  - 0 

The triad (N~,  F ~ ,  C ~ )  is called the Cartan connection of the Finsler 
space. The connection is naturally expressed in terms of horizontal and 
vertical parts. The connections are obviously interrelated, however, as 
expressed in the equations immediately above. 

A number of different fields, torsions, and curvatures can be defined 
from these connections. One of the references given at the beginning of this 
section should be consulted for these developments. 

Once the Cartan connection is determined for the fiber bundle, one 
can then consider a section of the fiber for particular coordinates x ~'. When 
this is set, y~' may no longer be an independent variable, but can be 
considered to be a vector field y~'(x) .  Thus, y~ ' (x )  plays the role of an 
auxiliary vector field. This defines an immersed submanifold in a sense 
recently described by Miron and Kawaguchi (1991). 

The Finsler metric f,,~(x, y) in this case gives rise to a tensor field which 
is a Riemannian metric tensor a~,~(x) =f~,~(x,  y ( x ) ) .  T h e  space with metric 
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a~,, is called the osculating Riemann space related to the Finsler space 
(Asanov, 1985, pp. 32-33 and ll0ff.). 

Since 

Oa~,~= of~,q of~,~ Oy t3 
Ox '~ Ox '~ Oy ~ Ox '~ 

the Christoffel connection for the Riemann space is 

cq3 = + C' v + - a " "  ox'~ 

The geodesic equation for the osculating Riemann space is obviously 
then 

dyU'+~ IX } y,ytS=O 

This compares with (2.4). 

3. TANGENT SPACE TRANSFORMATIONS 

Attention is now directed to a class of  gauge transformations which 
act on the tangent space. These are local changes of  coordinates in the fiber 
itself. The nature of  the transformation group is initially left unspecified. 
Particular examples will be considered later. 

The tangent vector y~ transforms as 

fi~'= Y*~y" (3.1) 

Y~ -ay~/Oy ~. which is specialized here to *~"- 
Even though the transformation does not act on the base space coordin- 

ates, it will be seen to produce changes in this space. Also, the transformation 
itself is x-dependent,  i.e., Y*~' = Y*~'(x, y). 

A similar type of  transformation has been studied by Ikeda [see, in 
particular, Ikeda (1985), but also Ikeda (1987, 1989)]. Note, however, that 
the unification scheme proposed by Ikeda is not applied here. 

It is assumed here that the partial derivative operator transforms as a 
covariant vector, 

0 0 - - ~  y ~  
a)7, ~, OY ~ (3.2) 

Y*~' Y~ = a~ (3.3) 
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In general, (3.2) and (3.3) would not hold together because the brackets 
[0/0)7 ", O/0y ~] would not vanish. Here, however, the metric condition (3.7) 
will be obtained, so that 

Oy~=y~ 0 v * . ~  v~OY*~y  ~ -  ~, 
O# ~ ~y~ (Y*~y~) = r~ + - 8~ 

The second term vanishes due to the metric condition. More directly, 
Y*~ = O#"/Oy ~ and (3.1) imply that (0 Y*~/Oy ~)y~ = O. 

Also, due to the definition (3.1), the condition O Y*~/Oy ~= O Y*~/Oy ~ 
must hold. This, too, relates to the fact that the basis 0/0)7 ~ is holonomic. 

It is assumed that the tensor used to form the Finsler metric function 
transforms as 

L ~ ( x , Y ) =  - Y~ Y~g,a(x, y) (3.4) 

Finsler metric function itself is scalar under the This implies that the 
transformation: 

p2(x,)7) - -i,-~ ,~ a *~ ~, *~ ~ = F 2 ( x , y )  =g~Y Y = g ~ Y ~ Y ~ Y ~  Y Y~ Y =g~y~y~ 

The covariant vector associated with y is y~=l(oF2/Oy~), which 
transforms as 

o t  #~ = Yuy~ (3.5) 

Recall that the Finsler metric is defined as f ~  =1(02F2/Oy~ dye). This 
implies immediately that 

f ~  = OyJOy ~ (3.6) 

and also, y~ = f ~ y L  
The partial derivative of  (3.5) with respect to )7 ~ produces 

O#~_~j~ = ~r~ Oy~_O Y~ 
0# ~ r~  0#--7t aft-- 7 y~ 

The application of  (3.2) and (3.6) gives 

_ ya  
= Y~ Y~f ,~  + _~  Oy~ Y. 

So the Finsler metric is not a tensor under  (3.1) unless the condition 

aY~ 
0"y # y,  = 0 (3.7) 

holds. This is called the "metric condit ion" by Asanov (1985, p. 42). 
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For a vector which is contravariant under  the y transformation, t] ~= 
~p. ~, 

Y~ q , a covariant derivative is 

_Oq ~ 
D~q ~ - ~ x ~  + L ~ q  (3.8) 

which satisfies D ~  ~'= w * - / 3 0  ~ 
The new connection L must transform as 

r~  ~ ~ Y * ~  OY*~" (3.9) L,~t3 = Y p L ~  - Y~ Ox,~ 

A significant difference between this and the x transformation is that 
L ~  is explicitly not symmetric in the lower two indices. 

The connection L is similar to the connection K of  Ikeda (1985). A 
connection which would correspond to the L of  Ikeda's notation is not 
applicable here because of  the metric condition. 

The derivative of  the Finsler metric tensor which is covariant under 
this transformation is 

D=L~ af~  ~ p . . . .  L ~ . f ~  Ox ~ L~ f z~  

A condition D ~ f ~  = 0 is imposed. This limits the type of  connection 
L which will appear in the theory, but includes cases of  physical significance. 
A permutation of  indices leads to 

Y ' ~  2 \ Ox Ox ~" Ox '~ ] 

1 -~(L~.+L~.~.~+L~.~+L~,~-L~.~..-L.=~.) (3.10) 

It is evident that the geodesic equation can thus be written as 

d r 
dY~'q-Y~Y~Y~=O- ds " ~ Y  y J t ~ ' ~ - L ~ ) Y ~ Y P  (3.11) 
ds 

Recall, now, that the line element of  a Finsler space is defined by 
ds = F(x, dx) = [g,~(x, y) dx" dx~] w2. Under  the transformation (3.1), the 
line element in the new space becomes dg = [g~,v(x, Y) dx ~ dx~] 1/2. 

An osculating Riemann space exists for each of  these two Finsler 
spaces. The osculating line elements are equal to the corresponding Finsler 
line elements. A quantity which describes the change of  scale from one 
osculating space to the other (which is induced by the gauge transformation) 
is b = ds/dg. This factor b is called the scale function. 
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In the osculating Riemann spaces a velocity 37~" can be defined which 
undergoes a scale transformation rather than a contravariant transformation 
like (3.1): 

fi,~ dX~= b dX"= 
= de as by" (3.12) 

In general, 37" is distinct from )7~. However, as will be seen in the next 
section, the two vectors can be equated under certain conditions. 

A Finsler metric function can be formed using )7":/3(x, 37)= 
[g.,,fi.37,.]l/2. Under the scale change, 

/3(x,  ; )  = ' -  - ~ - . ~ 1 / 2  Ig.,,y y j =[g,~,.dx"dx~']l/2/dg 

= [g,~ clx" dx~]I/2/ds = [g .~y~y~] l /2  = F(x, y) 

So this F is also scalar, which is equivalent to 37.37" = y.y". 
Variation o f /3  produces a geodesic equation 

d37" ~- ~2~37~37~ = 0 (3.13) 
dg 

This is equivalent to equation (8) of Beil (1987). 
It should be emphasized that the transformations described in this 

section are of a fundamentally different type than the usual passive or active 
coordinate transformations. Under the transformations (3.1), scalar prod- 
ucts are preserved even though the measurement scale changes. The scale 
change is reasonable, however, since it reflects the change from one metric 
to another. A different metric implies different scales for measurement due 
to the fact that measurements are done in frames with different velocities. 
Essentially, all spaces which are related to each other by (3.4) are physically 
equivalent. The tangent space transformations involve a velocity profile 
associated with an observer. It will be possible, as will be shown below, to 
relate a class of these transformations directly to acceleration. 

In particular, it is of  interest to investigate metrics which are equivalent 
to locally flat space, that is, which are related by a Y transformation to the 
Lorentz metric ~.~. This is the subject of the next section. 

4. EQUIVALENCE, GAUGE TRANSFORMATIONS, 
AND FIELDS 

This section considers the special case where the original tensor used 
to produce the Finsler metric function is locally Lorentzian at the points x 
under consideration, i.e., 

g.~ = r/.~ (4.1) 

This is, of course, an ordinary Riemannian space. 
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Under tangent space transformations of the type discussed in Section 
3~ the g tensor becomes 

g~,~(x, •) = r~  V~ n,~o (4.2) 

According to the traditional equivalence principle, for any Riemannian 
metric there is a coordinate transformation which takes the metric to ~7~ 
at a point x. Actually, there is a broader theorem of Fermi, discussed in 
Levi-Civita (1977, p. 167), which says that a transformation exists which 
takes the metric to ~7,~ all along a given world line, not just at a single 
point. So in the context of coordinate transformations in Riemann space 
any metric can be transformed to a local inertial frame along a world line. 

It is conjectured that a similar theorem exists for the tangent transforma- 
tions of Finsler spaces. That is, for any ~,~ there exists the inverse of (4.2) 
which results in the metric B~,~ in the neighborhood of a world line. This 
type of generalized equivalence has been discussed by Mack (1981, p. 142). 

Actually, the theorem is not necessary for the subsequent development 
here. Instead, it is simply stated that the spaces of interest are those which 
can be constructed from Lorentz metrics by (4.2). It turns out that spaces 
of physical interest can be generated in this manner. Thus, any space 
considered which is obtained through (4.2) where the inverse of Y~ exists 
satisfies a Fermi-like theorem for tangent space transformations. The trans- 
formation to an inertial frame is just the inverse of (4.2). 

It should be noted that the world line in the inertial space is not 
necessarily a geodesic. Thus, a test particle in the Lorentz space with this 
world line may be following a curved (nongeodesic) path. Ordinarily it is 
said in this instance that the particle is under the influence of some external 
force. 

The alternative point of view advocated here is that when a particle 
initially assumed to be in a Lorentz frame is observed to be moving on a 
curved path, the behavior does not necessarily have to be explained by an 
external force term added to the equation of motion. The alternative explana- 
tion is that the motion can equally well be accounted for by a new metric 
which would result from a gauge transformation like (4.2). Thus, the general 
relativistic idea of space-time curvature determining the path of a test 
particle is broadened to include fields other than gravitation, for example, 
the electromagnetic field. 

A geodesic equation in a new metric provides an equation of motion 
which can be identical with the equation of motion using external force in 
the Lorentz space. This will be demonstrated presently. 

This treatment has the conceptual advantage that the external fields 
are not added ad hoc to the Lagrangian but are included directly in the 
metric. The Finsler metric function F itself plays the role of the Lagrangian. 
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The conditions under which this can occur have been given by Yasuda 
(1981). Also, extended Lagrangian theories are possible (for example, Miron 
and Radivoiovici-Tatoiu, 1989) which are generalizations of Finsler theory. 

Various consequences of the assumption (4.1) are now investigated. 
The first is obtained from an examination of (2.1) in the form 

Z ~ = L ~ + 0 - ~ y  +d--~y 420fi~Ofi ~ 

The second term, considering (4.2), is 

8L,~ _~ o r~  o g~ 
y = 7/avY v Ofi-----d-fi" + 7/~, O- ~ Y~Y~ o7 

But the metric condition (3.7) can be written as (3 Y~/Oy ~)y~ = 0, which 
is equivalent to (~ Y~/Oy~)y " = O. 

These results imply that (Og,,JOy')y " = 0 and that f~,~ = G , .  
Transformations where Y is a function of x only and not a function 

of y obviously satisfy the metric condition. These are sometimes called the 
K-group or linear transformations. When (4.1) is assumed, these transforma- 
tions imply Riemannian spaces. The case is still of interest, however, since 
the theory then describes how these gauge transformations lead from one 
general relativistic space to another. 

For the Lorentz metric 7/~ the connection L is zero and in the transfor- 
med space (3.9) becomes 

ay*~ 

For spaces satisfying the metric condition the Christotiel connection is 

1 (OY~y~+ ~OY~ OY~ OY~ OY~ 80Y~ 
~, t3=~71~Z,\Ox~ y ~ x ~ + ~ x  ~ g v + y ~  Ox t3 Ox ~ y ~ _ g , , ~ x ~  ] 

Y since f,~ = Y~ Y~*/sv. 
It is apparent that * " -  Y~ f~ = Y ~ / v ~ .  

Also, from (3.3), (0 Y~/Ox '~) y , t , =  _ Y~(O Y*~/Ox '~). 
These results are combined to show that 

_ Y~ f~,~ cgY~ E~,,~ L~t3f~ ~ _ 0 Y~ , ~ -  = = Y~rlv ~ Ox c' c3x a 

which implies, using (4.3), that 

This checks with (3.10). 

(4.3) 

(4.4) 

(4.5) 
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Another useful result is 

(:g X '~ 

This is the same as D~,f.,. = O. 
The geodesic equation, considering (3.11), is 

a)7-----~ + - ~ y " y ~  = 0 = d)7"+ E~)7,y ~ +f"~(E~,~ - E,~,)37")7 ~ (4.6) 
dg dg 

Now, for the present case (3.8) becomes 

- - .  a q  ~ - .  - 8  
D.q =~x.  + L,~q 

When this is contracted with )7" and then {" is replaced by )7", 

i)o)TV" d)7" - =-~s + I.~y~)7" 

This can be substituted in (4.6) to produce a version of the geodesic 
equation, 

Another form of the geodesic equation can be obtained by a particular 
assumption concerning the two vectors )7" and )7 ~'. This is simply that, since 
both vectors represent a velocity in the transformed Riemannian space, they 
can be equal. That is, 

~" = Y*"y~ = by" = 37" (4.8) 

This has the form of an eigenvalue equation for the transformation 
matrix. It limits Yr to certain types, but, as will be seen, these types are of 
physical interest. 

Note that (4.8) can be introduced only in the context of the osculating 
Riemann spaces. It would not generally be consistent with the homogeneity 
requirements of the Finsler spaces where y" is an independent variable. 

The effect of (4.8) is expressed compactly by returning to (4.6): 

d-"  ~Y' + f ,  .,~. 13+ 7~wr  -Ez~,)y"y ~ =0  

(4.9) 
d)7" dY"+b db - -  - - y "  

ds ds ds 

The quantities /S and f can be expressed directly in terms of the 
transformation matrices as given above. S o  ( 4 . 9 )  is an equation of motion 
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for a particle in the inertial space which is written in terms of  a tangent 
space transformation. T h e / ]  terms represent a force on the particle which 
is imposed by the new metric f ~ .  

At this juncture a number of  mathematical results could be listed related 
- - v  

to the nonlinear connection N~ and the vertical connection C,~ as well as 
several curvatures. These developments are postponed to future work. 

5. GAUGE TRANSFORMATION EXAMPLES 

In this section particular examples of  gauge transformations of  the 
type (4.2) are presented. These will illustrate how the above theory might 
be applied. The first two examples are linear or K-group transformations 
where Y is dependent  on x only. 

The first one is 

Y~. = 8~, - B-z[1 - (1 + kBZ)I/2]B'~B~, (5.1) 

The vector B '~ = B~'(x) is defined in the original space with metric ~7~ so 
that B 2= ~7,wB~B ~ = B~B".  

When (5.1) is used in (4.2), we obtain 

g,~,~ = ~l~ + kB~,B~ 

F2(x, Y) = ( rl,,,, + k B ,  B~)y~y  ~ 

This general class of  Finsler metrics for B ~ = B~(x ,  y)  is described in 
Bell (1989). There the geodesic equation for one of  these metrics is shown 
to imply the Lorentz equation for a charged particle in an electromagnetic 
field. 

For the case B ~ = B~'(x)  the transformation is linear and the resulting 
space is Riemannian. This space is discussed in Beil (1987). The metric 
function can be formed as in Section 3 using the velocity vector 37 ~'. The 
Finsler metric is just f~,~ = r /~ + kB~B~ with a contravariant form f ~ =  
r/"~ - k(1 + k B 2 ) - I B ~ B  ~. 

A derivation is given in Beil (1987) which shows that the geodesic 
equation is identical with the Lorentz charged particle equation under the 
conditions 

B,~v '~ = e / mck  (5.2) 

B~, = A~, + a A / a x  ~ (5.3) 

The vector A~, is the electromagnetic potential of  the field external to the 
particle and v ~' = d x " / d z  = cy ~" is the particle velocity. 
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An alternate derivation using the ideas of the present work can be 
obtained by starting with (4.8). For the transformation (5.1) the condition 
(4.8) becomes 

{8~- B-211 - (1 + kB2)-I /2]B~B~}v ~ = [1 + kc-2(B~v~)2]- ' /2v  ~ 

with v~v ~ =  c 2. The  eigenvalue condition is satisfied if B~ = fly., where/3 
is some constant. This implies B~v ~ =  tic 2 and B~B ~ =  fl2c2. 

The conditions (5.3) and B. = fly. imply that for any external potential 
A. there is an electromagnetic gauge transformation which results in a 
potential vector B. which is parallel to the velocity vector of the particle. 

The condition that B,~ be parallel to v. is a boundary condition which 
is valid only in the context of the Riemann space osculating to the Finsler 
space. It does not imply that B,~ is velocity dependent and is introduced 
only after the computation of the Finsler metric and the variational process 
which produces the geodesic equation. 

There is a remarkable correspondence here with the electron theory of 
Dirac (1952). Dirac proposed a gauge condition on the potential A,~ which 
would set it to be proportional to v,. plus another term which he related to 
the vorticity of an electron stream. 

Actually, the idea of the potential being equal to a velocity term plus 
a second gaugelike term is in line with standard electromagnetic theory. 
The equation 

aS e 
A.  (5.4) mv~ - Ox ~ c 

is the usual relation between the potential and the action S. 
There have been recent geometric discussions of the relation of the 

electromagnetic potential to velocity by Parrott (1987) and Schweizer (1990). 
The geodesic equation in the inertial space is computed for (5.1) starting 

with 

- B OB~ OB~ //,.~ :B-2[1 ( l + k B 2 ) ' / 2 1 ( O B ~ B ~ -  - -  + k ~ x ~  B ~ 
\Ox "Ox ~ ] 

f ~  = ~"~ - k(1 + kB2)-IBS*B ~ 

When these expressions are substituted into (4.9) the result is 

o.o  ] 
dv- -~Q~ 'k[ r l "~ -k ( l+kB2) - 'B"B~]  ~ x  ~ \Ox ----~ Ox----;/B. v'~v r =0 

If B " =  f lY" as above, then 

OB~ ~ ~ dv~ 
ox---ffv v "  = 13 ~ v = 0 
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Also, the term involving B v vanishes since a symmetric part v~v " is 
multiplied by the part which is antisymmetric in the same indices. This 
produces 

dv~ ~_ kflc2.q~ ( OB~ OB~ v ~, 
d--7 \ o x--Z 7x / = 0  

The use of (5.2) and (5.3) then gives the Lorentz equation: 

dv ~" + e ~l~,,,F,~,,v,~ = 0 
d"g m e  

The transformation (5.1) can also be modified slightly to produce a 
negative sign in the metric, ~,,~ = 7h,~ - kB~,B,,. 

The equation of motion is 

dv~ kB_v~"q""( OBv OB'~v"=O (5.5) 
d~" " \Ox" Ox~/ 

This allows the use of conditions a bit different from (5.2) and (5.3): 

B,~v'~=-c/k 1/2 B~,= kl/2c2rne (A~, eC Oo~) (5.6) 

These conditions lead directly to the Lorentz equation. This is a "natural" 
choice of the electromagnetic gauge in a sense which is discussed in Beil 
(1991). 

Equations (5.6) imply that the g tensor could be written as ~,,, = 
rl~,, - c-2v,,v~. This type of metric goes back to discussions by Synge (1971) 
and has recently been studied by Kawaguchi and Miron (1989) in the 
context of generalized Lagrange spaces. The spaces produced by this metric 
are of a class which is broader than traditional Finsler spaces. 

There is also a correspondence between the theory of metrics produced 
by (5.1) and Kaluza-Klein theory. A comparison between this type of metric 
and Kaluza theory is given in Beil (1987). Basically, in this theory the 
electromagnetic field corresponds to a connection instead of a curvature as 
in Kaluza theories. 

The second example of a K-type gauge transformation is 
~ t  ot Y~, - X(x)6~, (5.7) 

which leads to g~,~ = A2rh,~. This class of spaces is discussed by Tavakol 
and Van den Bergh (1986) and also in Nishioka (1984). These look like the 
familiar Weyl spaces (for example, Adler et al., 1975, p. 491). There is also 
a correspondence with the theory of conformal transformations (Fulton et 
al., 1962). 
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There is a significant difference, however, between the present theory 
and the Weyl theory as it is usually developed. Here, the metric tensor 
transformation is f ,~ = A2n~ and a general contravariant vector transforms 
as  

(1 ~ = y * ~ q ~  = A-18~q ~ = A-mq~ 

The length of  this vector is f~q~t ]  ~ -- ~,~qZq~.  So the lengths of vectors 
are unchanged under these gauge transformations. 

In the Weyl theory the transformation is applied only to the metric 
tensor, so that the vector length is changed by the scale factor A 2. This, 
historically, was a major objection to the Weyl theory (Adler et al., 1975). 

Since the lengths of  vectors are invariant here, one has a Weyl-type 
theory without the above drawback. This point is brought out in Nishioka 
(1984). 

The line element ds is still subject to a scale change since it is the 
length of the increment d x  ~. Thus, dg = Ads .  This corresponds to the fact 
that a field is "turned on"  by the gauge transformation or, alternatively, 
that a reference frame with a different velocity is used. This is in contrast 
to the conformal or Weyl theories, where the transformation is a coordinate 
transformation and the scale change is induced by the coordinate change 
coupled with the transport of a vector from one point to another. Though 
some of the equations are similar, there is a fundamental difference between 
the two theories. See Fulton et al. (1962) for a thorough discussion of 
conformal theories. 

For transformations of the type (5.7) the velocity vector transforms 
contravariantly as well as by the scale change: 

= Y~ v = A - i v  ~ 

Because A = b -1, the eigenvalue equation (4.8) holds automatically. 
The connections are easily obtained: 

0A 

(0h 0h 0h ) 
~,~ = A ~ 7/~ + 0x--- ff 7/~ - Ox-- z r /~ 

The geodesic equation is derived from (4.9): 

d v ~ + l  dA I OA 
d r  -~r v "  - c2 rl ~ . - -  = 0 O X  ~ 

Now, a possible choice for A is 

A(x) = 1 + 2q~x  ~ + q2x2 



1042 Bell 

where q is a constant vector. This form is suggested by the traditional 
expression for the conformal transformation. One has, then, 

1 dA 2 + a~ 
" =A(q~ q2x,~)= -~ 

-A ax" 

which defines a vector a,, with a 2= 4c2q2/A. 
The geodesic equation in terms of a~ would be 

dv~ v'~a-----~ v ~ - a ~ = 0 
dr  F c2 

But if v~a ~ = O, then a"  = dye~dr.  
So the result is that this type of  gauge transformation leads to an 

expression for a transformation to a frame with an acceleration a ". 
Finally, a general class of  transformations which are not of  the K type, 

that is, where Y* is dependent  on yg, is mentioned. These satisfy the 
requirements of  homogeneity as well as the condition a Y*~/Oy '~ = 0 Y*  ~/Oy" 
and the metric condition. 

The transformations are 

y*~  = g l (x ) t~  + g2(r)A~A~ + g3(r)( A~B~ + A~B ~) + g4(r)B"B~ 

The vectors A"  and B ~ depend only on x. The y dependence enters in the 
variable r = ( A , , y ~ ) / ( B ~ y ' ) ,  which is clearly of  zero homogeneity in y".  
The general functions of  r, g2, g3, and g4 are required to satisfy the conditions 

g~ = - rg~ ,  g'4 = - r g  '3 

where the prime denotes a derivative with respect to the argument. 
These transformations appear to lead to Finsler metrics which have 

not previously been investigated. 
A n u m b e r o f  other gauge transformation types in addition to the ones 

given above are possible. The theory provides a systematic method for 
generating metrics by choosing various forms of Y. There may be several 
applications in various physical contexts. 

6. DISCUSSION 

Two principal results should be emphasized: 
First, it has been demonstrated how a unified theory of gravitation and 

electromagnetism is implied by a gauge transformation in Finsler tangent 
space. The electromagnetic potential is directly related to the parameters 
of  the transformation. The transformation produces a new metric which 
has an equation of motion that is the Lorentz equation of  charged particles. 
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This means  that  there is a general ized equivalence ( through the gauge 
t ransformat ions)  o f  inertial spaces to spaces which contain  e lectromagnet ic  
fields. The  e lect romagnet ic  fields arise f rom connect ions  o f  the t ransformed 
metric ra ther  than f rom curvatures,  as in other  unified theories. 

Second,  it has been  shown how the old Weyl or  conformal  theories 
can be rehabil i tated to overcome the object ion o f  noninvar iance  o f  the 
lengths o f  vectors. One has all the beauty  o f  the original Weyl  theory  with- 
out  nonphys ica l  effects. A part icular  example  was given in which the 
accelerat ion o f  a f rame is directly related to a gauge t ransformat ion.  
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